Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8379, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600116

ABSTRACT

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Subject(s)
Lacticaseibacillus rhamnosus , Monocytes , Humans , Monocytes/metabolism , Secretome , Lipopolysaccharides , Cytokines/metabolism , Chemokines/metabolism , Immunity
2.
Animals (Basel) ; 13(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627368

ABSTRACT

Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC) O157:H7. Currently, there are no effective methods of eliminating this important zoonotic pathogen from cattle, and colonization resistance in relation to EHEC O157:H7 in cattle is poorly understood. We developed a gnotobiotic EHEC O157:H7 murine model to examine aspects of the cattle pathogen-microbiota interaction, and to investigate competitive suppression of EHEC O157:H7 by 18 phylogenetically distinct commensal E. coli strains of bovine origin. As stress has been suggested to influence enteric colonization by EHEC O157:H7 in cattle, corticosterone administration (±) to incite a physiological stress response was included as an experimental variable. Colonization of the intestinal tract (IT) of mice by the bovine EHEC O157:H7 strain, FRIK-2001, mimicked characteristics of bovine IT colonization. In this regard, FRIK-2001 successfully colonized the IT and temporally incited minimal impacts on the host relative to other EHEC O157:H7 strains, including on the renal metabolome. The presence of the commensal E. coli strains decreased EHEC O157:H7 densities in the cecum, proximal colon, and distal colon. Moreover, histopathologic changes and inflammation markers were reduced in the distal colon of mice inoculated with commensal E. coli strains (both propagated separately and communally). Although stress induction affected the behavior of mice, it did not influence EHEC O157:H7 densities or disease. These findings support the use of a gnotobiotic murine model of enteric bovine EHEC O157:H7 colonization to better understand pathogen-host-microbiota interactions toward the development of effective on-farm mitigations for EHEC O157:H7 in cattle, including the identification of bacteria capable of competitively colonizing the IT.

3.
Nutrients ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35215500

ABSTRACT

Pulse consumption has been shown to confer beneficial effects on blood glucose and insulin levels. Lentil consumption, in particular, consistently lowers acute blood glucose and insulin response when compared to starchy control foods. The mechanism by which lentils lower postprandial blood glucose response (PBGR) and insulin levels is unclear; however, evidence suggests that this effect may be linked to macronutrients and/or the amount of lentils consumed. This review attempts to consolidate existing studies that examined lentil consumption and glycemic and/or insulinemic responses and declared information on macronutrient composition and dietary fibre content of the foods tested. Collectively, these studies suggest that consumption of lentils reduces PBGR, with the minimum effective serving being ~110g cooked to reduce PBGR by 20%. Reductions in PBGR show modest-to-strong correlations with protein (45-57 g) and dietary fibre (22-30 g) content, but has weaker correlations with available carbohydrates. Increased lentil serving sizes were found to moderately influence relative reductions in peak blood glucose concentrations and lower the area under the blood glucose curve (BG AUC). However, no clear relationship was identified between serving and relative reductions in the BG AUC, making it challenging to characterize consistent serving-response effects.


Subject(s)
Blood Glucose , Lens Plant , Blood Glucose/metabolism , Cross-Over Studies , Dietary Carbohydrates/metabolism , Dietary Fiber/metabolism , Glycemic Index , Insulin , Lens Plant/metabolism , Postprandial Period
4.
Gut Pathog ; 12(1): 53, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33292444

ABSTRACT

BACKGROUND: Cathelicidins are a class of antimicrobial peptide, and the murine cathelicidin-related antimicrobial peptide (mCRAMP) has been demonstrated in vitro to impair Salmonella enterica serovar Typhimurium proliferation. However, the impact of mCRAMP on host responses and the microbiota following S. Typhimurium infection has not been determined. In this study mCRAMP-/- and mCRAMP+/+ mice (± streptomycin) were orally inoculated with S. enterica serovar Typhimurium DT104 (SA +), and impacts on the host and enteric bacterial communities were temporally evaluated. RESULTS: Higher densities of the pathogen were observed in cecal digesta and associated with mucosa in SA+/mCRAMP-/- mice that were pretreated (ST+) and not pretreated (ST-) with streptomycin at 24 h post-inoculation (hpi). Both SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were more susceptible to infection exhibiting greater histopathologic changes (e.g. epithelial injury, leukocyte infiltration, goblet cell loss) at 48 hpi. Correspondingly, immune responses in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice were affected (e.g. Ifnγ, Kc, Inos, Il1ß, RegIIIγ). Systemic dissemination of the pathogen was characterized by metabolomics, and the liver metabolome was affected to a greater degree in SA+/ST+/mCRAMP-/- and SA+/ST-/mCRAMP-/- mice (e.g. taurine, cadaverine). Treatment-specific changes to the structure of the enteric microbiota were associated with infection and mCRAMP deficiency, with a higher abundance of Enterobacteriaceae and Veillonellaceae observed in infected null mice. The microbiota of mice that were administered the antibiotic and infected with Salmonella was dominated by Proteobacteria. CONCLUSION: The study findings showed that the absence of mCRAMP modulated both host responses and the enteric microbiota enhancing local and systemic infection by Salmonella Typhimurium.

5.
Nutrients ; 12(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167590

ABSTRACT

The mechanism by which high fat-diet induced obesity affects cardiac protein expression is unclear, and the extent to which this is modulated by prebiotic treatment is not known. These outcomes were assessed in rats initially fed a high-fat diet, then the top 40% weight gain group were randomly allocated to control (CON), high-fat (HF) and HF supplemented with fructooligosaccharide (32 g; HF-FOS) treatments for 12 weeks (n = 10/group). At sacrifice, left ventricles were either frozen or preserved in formalin. Serum was stored for glucose and insulin measurements. Protein spectra was obtained using an Orbitrap analyzer, processed with Sequest and fold changes assessed with Scaffold Q +. Treatment effects for body weights, glucose and insulin were assessed using one-way ANOVA, and the differential protein expression was assessed by a Mann-Whitney U test. The Database for Annotation, Visualization and Integrated Discovery and the Kyoto Encyclopedia of Genes and Genomes identified pathways containing overrepresented proteins. Hematoxylin and eosin sections were graded for hypertrophy and also quantified; differences were identified using Chi-square analyses and Mann-Whitney U tests. HF diet fed rats were significantly (p < 0.05) heavier than CON, and 23 proteins involved in mitochondrial function and lipid metabolism were differentially expressed between HF and CON. Between HF-FOS and HF, 117 proteins involved in contractility, lipid and carbohydrate metabolism were differentially expressed. HF cardiomyocytes were significantly (p < 0.05) more hypertrophic than CON. We conclude that high-fat feeding and FOS are associated with subcellular deviations in cardiac metabolism and contractility, which may influence myocardial function and alter the risk of cardiovascular disease.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Myocardium/metabolism , Obesity/chemically induced , Obesity/metabolism , Oligosaccharides/pharmacology , Proteins/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Fasting/blood , Gene Ontology , Insulin/blood , Male , Myocytes, Cardiac/metabolism , Obesity/blood , Rats, Sprague-Dawley
6.
PeerJ ; 6: e4675, 2018.
Article in English | MEDLINE | ID: mdl-29686948

ABSTRACT

OBJECTIVE: The benefits of exercise on brain health is well known in aging and psychiatric populations. However, the relationship between habitual exercise in young and healthy adults remains unclear. This study explored the effects an eight-week exercise prescription on cognitive function, brain-derived neurotrophic factor (BDNF) and cathepsin B (CTHB) in young and healthy adults. METHODS: A total of 22 low-active, young and healthy adults were recruited from a local university. A total of 12 participants performed an eight-week exercise prescription and 12 participants served as controls. Cognitive assessments, cardiorespiratory fitness and plasma BDNF and CTHB concentrations were measured at baseline and eight weeks. RESULTS: Results showed exercise improved cardiorespiratory fitness (p = 0.044, d = 1.48) with no improvements in cognitive function or no changes in plasma BDNF and CTHB concentrations. CONCLUSION: We provide evidence that a short-term course of moderate exercise does not improve cognitive function or change plasma biochemical markers concentrations in young and healthy adults, despite mild improvements in cardiorespiratory fitness. These results suggest that cognitive health may peak during early adulthood leaving little room for improvement throughout this period of the lifespan.

7.
Front Psychiatry ; 9: 37, 2018.
Article in English | MEDLINE | ID: mdl-29559928

ABSTRACT

OBJECTIVE: The aim of this study is to investigate the effects of exercise as an add-on therapy with antidepressant medication and cognitive behavioral group therapy (CBGT) on treatment outcomes in low-active major depressive disorder (MDD) patients. We also explored whether exercise reduces the residual symptoms of depression, notably cognitive impairment and poor sleep quality, and aimed to identify putative biochemical markers related to treatment response. METHODS: Sixteen low-active MDD patients were recruited from a mental health day treatment program at a local hospital. Eight medicated patients performed an 8-week exercise intervention in addition to CBGT, and eight medicated patients attended the CBGT only. Twenty-two low-active, healthy participants with no history of mental health illness were also recruited to provide normal healthy values for comparison. RESULTS: Results showed that exercise resulted in greater reduction in depression symptoms (p = 0.007, d = 2.06), with 75% of the patients showing either a therapeutic response or a complete remission of symptoms vs. 25% of those who did not exercise. In addition, exercise was associated with greater improvements in sleep quality (p = 0.046, d = 1.28) and cognitive function (p = 0.046, d = 1.08). The exercise group also had a significant increase in plasma brain-derived neurotrophic factor (BDNF), p = 0.003, d = 6.46, that was associated with improvements in depression scores (p = 0.002, R2 = 0.50) and sleep quality (p = 0.011, R2 = 0.38). CONCLUSION: We provide evidence that exercise as an add-on to conventional antidepressant therapies improved the efficacy of standard treatment interventions. Our results suggest that plasma BDNF levels and sleep quality appear to be good indicators of treatment response and potential biomarkers associated with the clinical recovery of MDD.

8.
Br J Nutr ; 118(6): 441-453, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28954640

ABSTRACT

Healthy adults (n 30) participated in a placebo-controlled, randomised, double-blinded, cross-over study consisting of two 28 d treatments (ß2-1 fructan or maltodextrin; 3×5 g/d) separated by a 14-d washout. Subjects provided 1 d faecal collections at days 0 and 28 of each treatment. The ability of faecal bacteria to metabolise ß2-1 fructan was common; eighty-seven species (thirty genera, and four phyla) were isolated using anaerobic medium containing ß2-1 fructan as the sole carbohydrate source. ß2-1 fructan altered the faecal community as determined through analysis of terminal restriction fragment length polymorphisms and 16S rRNA genes. Supplementation with ß2-1 fructan reduced faecal community richness, and two patterns of community change were observed. In most subjects, ß2-1 fructan reduced the content of phylotypes aligning within the Bacteroides, whereas increasing those aligning within bifidobacteria, Faecalibacterium and the family Lachnospiraceae. In the remaining subjects, supplementation increased the abundance of Bacteroidetes and to a lesser extent bifidobacteria, accompanied by decreases within the Faecalibacterium and family Lachnospiraceae. ß2-1 Fructan had no impact on the metagenome or glycoside hydrolase profiles in faeces from four subjects. Few relationships were found between the faecal bacterial community and various host parameters; Bacteroidetes content correlated with faecal propionate, subjects whose faecal community contained higher Bacteroidetes produced more caproic acid independent of treatment, and subjects having lower faecal Bacteroidetes exhibited increased concentrations of serum lipopolysaccharide and lipopolysaccharide binding protein independent of treatment. We found no evidence to support a defined health benefit for the use of ß2-1 fructans in healthy subjects.


Subject(s)
Bacteroidetes/metabolism , Bifidobacterium/metabolism , Feces/microbiology , Fructans/administration & dosage , Adolescent , Adult , Bacteroidetes/isolation & purification , Bifidobacterium/isolation & purification , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Metagenome , Middle Aged , Polymorphism, Restriction Fragment Length , Polysaccharides/administration & dosage , RNA, Ribosomal, 16S/isolation & purification , Sequence Analysis, DNA , Young Adult
9.
Br J Nutr ; 115(10): 1748-59, 2016 May 28.
Article in English | MEDLINE | ID: mdl-26987626

ABSTRACT

ß2-1 Fructans are purported to improve health by stimulating growth of colonic bifidobacteria, increasing host resistance to pathogens and stimulating the immune system. However, in healthy adults, the benefits of supplementation remain undefined. Adults (thirteen men, seventeen women) participated in a double-blinded, placebo-controlled, randomised, cross-over study consisting of two 28-d treatments separated by a 14-d washout period. Subjects' regular diets were supplemented with ß2-1 fructan or placebo (maltodextrin) at 3×5 g/d. Fasting blood and 1-d faecal collections were obtained at the beginning and at the end of each phase. Blood was analysed for clinical, biochemical and immunological variables. Determinations of well-being and general health, gastrointestinal (GI) symptoms, regularity, faecal SCFA content, residual faecal ß2-1 fructans and faecal bifidobacteria content were undertaken. ß2-1 Fructan supplementation had no effect on blood lipid or cholesterol concentrations or on circulating lymphocyte and macrophage numbers, but significantly increased serum lipopolysaccharide, faecal SCFA, faecal bifidobacteria and indigestion. With respect to immune function, ß2-1 fructan supplementation increased serum IL-4, circulating percentages of CD282+/TLR2+ myeloid dendritic cells and ex vivo responsiveness to a toll-like receptor 2 agonist. ß2-1 Fructans also decreased serum IL-10, but did not affect C-reactive protein or serum/faecal Ig concentrations. No differences in host well-being were associated with either treatment, although the self-reported incidence of GI symptoms and headaches increased during the ß2-1 fructan phase. Although ß2-1 fructan supplementation increased faecal bifidobacteria, this change was not directly related to any of the determined host parameters.


Subject(s)
Dietary Supplements , Fructans/administration & dosage , Immune System/drug effects , Adolescent , Adult , Bifidobacterium/drug effects , C-Reactive Protein/metabolism , Colon/drug effects , Colon/microbiology , Cross-Over Studies , Diet , Double-Blind Method , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Microbiome/drug effects , Humans , Immune System/metabolism , Immunoglobulins/blood , Interleukin-10/blood , Interleukin-4/blood , Lipopolysaccharides/blood , Male , Middle Aged , Toll-Like Receptor 2/blood , Young Adult
10.
PLoS One ; 8(7): e68961, 2013.
Article in English | MEDLINE | ID: mdl-23874826

ABSTRACT

Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-ß1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-ß1 relative to ground controls. Total colonic TGF-ß1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-ß1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-ß1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice.


Subject(s)
Carrier Proteins/genetics , Cytokines/metabolism , Intestinal Mucosa/metabolism , Space Flight , Animals , Colon/metabolism , Cytokines/genetics , Housing, Animal , Humans , Interleukin-2/metabolism , Intestinal Mucosa/microbiology , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteocalcin/genetics , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...